The Geometric Structure of Skew Lattices
نویسنده
چکیده
A skew lattice is a noncommutative associative analogue of a lattice and as such may be viewed both as an algebraic object and as a geometric object. Whereas recent papers on skew lattices primarily treated algebraic aspects of skew lattices, this article investigates their intrinsic geometry. This geometry is obtained by considering how the coset geometries of the maximal primitive subalgebras combine to form a global geometry on the skew lattice. While this geometry is derived from the algebraic operations, it can be given a description that is independent of these operations, but which in turn induces them. Various aspects of this geometry are investigated including: its general properties; algebraic and numerical consequences of these properties; connectedness; the geometry of skew lattices in rings; connections between primitive skew lattices and completely simple semigroups; and finally, this geometry is used to help classify symmetric skew lattices on two generators. Recall that a band is a semigroup satisfying the idempotent law: xx = x. Upon examining bands which are multiplicative subsemigroups of rings, one uncovers classes of bands which also possess an idempotent countermultiplication. This leads one to define a skew lattice to be an algebra with a pair of associative idempotent binary operations, the join and the meet, which are connected by a set of absorption laws (see 1.1). While skew lattices of idempotents in rings remain important sources of motivation, the results of [10-12] make it clear that skew lattices can sustain mathematical life on their own. Perhaps the most natural way to think about a skew lattice is as a noncommutative analogue of a lattice. As such, a skew lattice is not only an algebraic object, but also a geometric object. Thus far most of the research given in [10-12] has emphasized the algebraic side of skew lattices. The purpose of this paper is to investigate their geometric aspects and in particular the role of the natural partial order in determining their algebraic structure, much as a lattice is determined by its natural partial ordering. It is not our goal, however, to reinvent lattice theory. Hence the geometry of a skew lattice will be studied relative to the fixed structure of its underlying lattice. Saying this entails an implicit reference to the fundamental Clifford-McLean Theorem which in effect provides a first sketch of a skew lattice: a congruence is defined on each skew lattice (called natural equivalence) which induces its maximal lattice image and whose equivReceived by the editors November 20, 1989 and, in revised form, November 21, 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 20M10; Secondary 06A10, 20M25.
منابع مشابه
On the Coset Laws for Skew Lattices in Rings
Skew lattices are the most successful generalization of lattices to the noncommutative case to date. Roughly speaking, each skew lattice can be seen as a lattice of rectangular bands. A coset decomposition can be given to each pair of comparable maximal rectangular bands. The internal structure of skew lattices is revealed by their coset structure. In the present paper we study the coset struct...
متن کاملOn Ideals of a Skew Lattice
Ideals are one of the main topics of interest when it comes to the study of the order structure of an algebra. Due to their nice properties, ideals have an important role both in lattice theory and semigroup theory. Two natural concepts of ideal can be derived, respectively, from the two concepts of order that arise in the context of skew lattices. The correspondence between the ideals of a ske...
متن کاملCategorical Skew Lattices
Categorical skew lattices are a variety of skew lattices on which the natural partial order is especially well behaved. While most skew lattices of interest are categorical, not all are. They are characterized by a countable family of forbidden subalgebras. We also consider the subclass of strictly categorical skew lattices.
متن کاملStochastic DEA with Using of Skew-Normal Distribution in Error Structure
The stochastic data envelopment analysis (SDEA) was developed considering the value ofinputs and outputs as random variables. Therefore, statistical distributions play an importantrole in this regard. The skew-normal (SN) distribution is a family of probability densityfunctions that is frequently used in practical situations. In this paper, we assume that the inputand output variables are skew-...
متن کاملModelling of Correlated Ordinal Responses, by Using Multivariate Skew Probit with Different Types of Variance Covariance Structures
In this paper, a multivariate fundamental skew probit (MFSP) model is used to model correlated ordinal responses which are constructed from the multivariate fundamental skew normal (MFSN) distribution originate to the greater flexibility of MFSN. To achieve an appropriate VC structure for reaching reliable statistical inferences, many types of variance covariance (VC) structures are considered ...
متن کامل